Design and Construction of Automatic Capacitor Bank Based on Internet of Things (IoT) in Residential Homes
Keywords:
Electricity, Power losses, Capacitor Bank, Power factor, Internet Of Things (IoT)Abstract
Electricity is a crucial energy source in daily life, but we often face challenges such as power losses. Factors causing power losses include resistance in distribution cables, overloads, low voltage, and other factors. To address this issue, the solution is to use capacitor banks. The use of capacitor banks can overcome these challenges by improving the power factor and reducing energy losses.
Capacitor banks have proven effective in improving the power factor, but the manual operation often disrupts users. Therefore, the aim of this final project is to design and implement an automatic capacitor bank system using the Internet of Things (IoT) to enhance energy efficiency and user convenience in residential homes. This automatic capacitor bank system involves a microcontroller control unit connected with current and voltage sensors to detect the load. The IoT module allows users to monitor and control the capacitor bank remotely via a mobile application. Test results show that this system can automatically adjust the capacitor bank capacity according to power demand, improve the power factor, and significantly reduce energy consumption. The implementation of an IoT-based automatic capacitor bank in residential homes is expected to be an effective solution for improving energy efficiency and user convenience in modern home electrical systems.
References
D. A. Basudewa, W. Aribowo, M. Widyartono, dan A. C. Hermawan, “Analisa Penggunaan Kapasitor Bank Terhadap Faktor Daya Pada Gedung Idb Laboratory Unesa,” Jurnal Teknik Elektro, vol. 9, pp. 697-707, 2020.
M. Darusman, “Analisa Kelayakan Pemasangan Kapasitor Bank Pada Gardu Distribusi Untuk Kemampuan Layanan di PT. EPI (Energi Pelabuhan Indonesia) Cabang Pontianak,” Jurnal Teknik Elektro Universitas Tanjungpura, vol. 2, no. 1, 2018.
D. Handarly dan J. Lianda, “Sistem Monitoring Daya Listrik Berbasis IoT (Internet of Thing),” J. Electr. Electron. Control Automot. Eng, vol. 3, pp. 205-208, 2018.
I. Muhammad, “Sistem Kendali Dan Monitoring Faktor Daya Listrik Berbasis Mikrokontroler Dan Internet Of Things (IoT),” Jurnal Fakultas Teknik Universitas Tanjungpura, 2020.
H. N. Isnianto dan E. Puspitaningrum, “Monitoring Tegangan, Arus, Dan Daya Secara Real Time untuk Perbaikan Faktor Daya Secara Otomatis pada Jaringan Listrik Satu Fase Berbasis Arduino,” Jurnal Nasional Teknologi Terapan (JNTT), vol. 2, pp. 31-36, 2018.
P. A. Juliantara, I. W. A. Wijaya, dan C. G. I. Partha, “Rancang Bangun Kapasitor Bank Otomatis Berbasis Mikrokontroler ATmega 328P Untuk Perbaikan Faktor Daya,” Jurnal SPEKTRUM, vol. 5, pp. 157-163, 2018.
S. Noor dan N. Saputera, “Efisiensi Pemakaian Daya Listrik Menggunakan Kapasitor Bank,” Poros Teknik, vol. 6, pp. 73-79, 2014.
Proceeding:
S. Anwar, T. Artono, N. Nasrul, D. Dasrul, dan A. Fadli, “Pengukuran Energi Listrik Berbasis PZEM-004T,” dalam Prosiding Seminar Nasional Politeknik Negeri Lhokseumawe, vol. 3, no. 1, pp. 272, 2019.
Texbooks:
A. Von Meier, *Electric power systems: a conceptual introduction*. John Wiley & Sons, 2006.
Laporan:
W. N. Hardiranto, “Analisa optimasi perbaikan faktor daya dan drop tegangan dengan menggunakan kapasitor bank pada line 5 PT Bukit Asam (persero) Tbk,” Skripsi. Universitas Lampung, 2017.
Y. Sartika, “Sistem Pengoperasian Kapasitor Bank Dan Monitoring Menggunakan Internet Of Things (IoT) Di Gedung Elektro,” Disertasi. Politeknik Negeri Bengkalis, 2021.
Buku Terjemahan:
M. Abdillah, Merakit Kapasitor Bank Untuk Jaringan Listik, Pontianak: Yayasan Kemajuan Teknik, 2015.
Risya, “Rangkaian Seri dan Paralel Kapasitor Bank,” [Online]. Tersedia: https://www.kompas.com/skola/read/2020/10/20/183421869/pengertianrangkaian-seri-dan-paralel-kapasitor?page=al. [Diakses 5 Agustus 2023].