Comparison of SVM and Naïve Bayes Algorithms in Sentiment Analysis of TikTok Comments on Skincare Products
Keywords:
Analisis Sentimen, TikTok, Support Vector Machine (SVM), Produk Skincare, Naïve Bayes, SMOTEAbstract
This research compares the performance of the Support Vector Machine (SVM) and Naïve Bayes algorithms in sentiment analysis of TikTok comments about skincare products, using the Synthetic Minority Over-sampling Technique (SMOTE) to address data imbalance. The evaluation results indicate that SVM outperforms Naïve Bayes, achieving an accuracy of 59.43% compared to 47.65%. Additionally, SVM excels in the F1 Score metric (60.37% versus 54.74%), although Naïve Bayes demonstrates slightly higher precision (67.96% compared to 62.76%). Therefore, SVM proves to be more effective in classifying sentiment comments, making it the recommended algorithm for sentiment analysis tasks in the skincare product domain on TikTok.
References
Medhat, W., Hassan, A., & Korashy, H. (2014). Sentiment analysis algorithms and applications: A survey. Ain Shams Engineering Journal, 5(4), 1093–1113. https://doi.org/10.1016/j.asej.2014.04.011
Rita Apriani, Dudih Gustian, Jurnal Rekayasa Teknologi Nusa Putra. Vol. 6, No. 1, September 2019: Hal 54 - 62
Appel, G., Grewal, L., Hadi, R., & Stephen, A. T. (2020). The future of social media in marketing. Journal of the Academy of Marketing Science, 48(1), 79–95. https://doi.org/10.1007/s11747-019-00695-1
“dataIndonesia.id” . (2023, Desember 12). Data Jumlah Pengguna TikTok di Indonesia hingga Oktober 2023. https://dataindonesia.id/ekonomi-digital/detail/data-jumlah-pengguna-tiktok-di-indonesia-hingga-oktober-2023
Muhammad Arief Rahman, Herman Budianto, & Setiawan, E. I. (2019). Aspect Based Sentimen Analysis Opini Publik Pada Instagram dengan Convolutional Neural Network. INSYST: Journal of Intelligent System and Computation, 1(2), 50–57. https://doi.org/10.52985/insyst.v1i2.83
Kaharudin, A., Agus Supriyadi, A., Baitika, H., & Derryanur, M. (2023). OKTAL : Jurnal Ilmu Komputer dan Science Analisis Sentimen pada Media Sosial dengan Teknik Kecerdasan Buatan Naïve Bayes: Kajian Literatur Review. 2(6). https://harzing.com/resources/publish-or-perish
Amelia, E. E., & Yustiana, I. (2024). Analisis Sentimen Pada Ulasan Produk UNIQLO dengan Algoritma Naive Bayes. In Jurnal Sains Komputer & Informatika (J-SAKTI (Vol. 8, Issue 1).
Oktavia, D., & Ramadahan, Y. R. (2023). Analisis Sentimen Terhadap Penerapan Sistem E-Tilang Pada Media Sosial Twitter Menggunakan Algoritma Support Vector Machine (SVM). Media Online), 4(1), 407–417. https://doi.org/10.30865/klik.v4i1.1040
Lillah, M. R. R. L., Maylawati, D. S. ., Zulfikar, W. B. ., Uriawan, W. ., & Wahana, A. . (2023). Implementasi Algoritma K-Nearest Neighbor (KNN) untuk Analisis Sentimen Pengguna Aplikasi Tokopedia . Intellect : Indonesian Journal of Learning and Technological Innovation, 2(2), 171–184.
Devika, M. D., Sunitha, C., & Ganesh, A. (2016). Sentiment Analysis: A Comparative Study on Different Approaches. Procedia Computer Science, 87, 44–49. https://doi.org/10.1016/j.procs.2016.05.124
Daffa Muafa Lizda Iswari, M. (n.d.). Pengembangan Aplikasi Berbasis Web dengan Rshiny untuk Data Klasifikasi Menggunakan Metode Naive Bayes.
Noviana, R., & Rasal, I. (2023). Penerapan Algoritma Naive Bayes dan SVM untuk Analisis Sentimen Boy Band BTS pada Media Sosial Twitter
Maulana, B. A., Fahmi, M. J., Imran, A. M., & Hidayati, N. (2024). Analisis Sentimen Terhadap Aplikasi Pluang Menggunakan Algoritma Naive Bayes dan Support Vector Machine(SVM). MALCOM: Indonesian Journal of Machine Learning and Computer Science, 4(2), 375-384.
Fern ́andez, A., Garcia, S., Herrera, F. (2018). SMOTE for Learning from Imbalanced Data: Progress and Challenges, Marking the 15-year Anniversary. Journal of Artificial Intelligence Research, 61. https://doi.org/10.1613/jair.1.11192