SISTEM PENDETEKSI TARGET BERDASARKAN WARNA PADA AUTONOMOUS ROBOT GUN (ARO-GUN)

Authors

  • Yunita Septiyanda Institut Teknologi Sumatera
  • Ali Muhtar Institut Teknologi Sumatera
  • Purwono Prasetyawan Institut Teknologi Sumatera
https://doi.org/10.58466/injection.v2i2.1485

Keywords:

digital image processing, target detection, target locking

Abstract

The low level of accuracy and precision in the process target tracking by military causing casualties because of shooting error. Shooting error can be due because of human-error like fatigue. Therefore, this study aims to design a system that can detect and lock target automatically so that shooting errors can be minimized.  On the implementation, the system uses color detection, which is a part of the digital image processing method. The target image, which has been recorded by a webcam, will be processed by a Raspberry Pi 3b+ using Python and the OpenCV library. Research results shown the ARO-GUN system can perform precise detection on a predetermined target with 100% accuracy of target detection also capable of accurately detecting the target in the light intensity range of 750-1000 lux. Therefore, the ARO-GUN system has been able to meet the design goal to detect accurately so it’s can minimize shooting errors.

References

A. A. Fua, “Sang Komandan Syok Usai Insiden Peluru Nyasar yang Tewaskan Polisi Buton,” 2018. https://m.liputan6.com/regional/read/3605884/sang-komandan-syok-usai-insiden-peluru-nyasar-yang-tewaskan-polisi-buton.

K. K. Wati, A. P. Sari, and N. R. Supadmana Muda, “Sistem Kendali Jarak Jauh Senjata Ss2 Pada Pasukan Dengan Metode Proportional Integral Derivative (PID),” Jurnal Teknik Elektro dan Komputer TRIAC, vol. 5, no. 2. 2018, doi: 10.21107/triac.v5i2.4093.

B. Herdiana and Y. B. Pratama, “Sistem Deteksi dan Penembak Target pada Robot Tank dengan Pengendali Nirkabel Detection and Targets Shooter System on Robot Tank with Wireless Controller,” vol. 5, no. 1, 2017.

B. Y. Budi Putranto, W. Hapsari, and K. Wijana, “Segmentasi Warna Citra Dengan Deteksi Warna Hsv Untuk Mendeteksi Objek,” J. Inform., vol. 6, no. 2, 2011, doi: 10.21460/inf.2010.62.81.

I. Usuman, A. Dharmawan, A. Zatu, and K. Frisky, “Sistem Pendeteksi Kulit Manusia Menggunakan Segmentasi Warna Kulit Pada Tipe Citra HSV (Hue Saturation Value),” IJEIS (Indonesian J. Electron. Instrum. Syst., vol. 2, no. 2, pp. 143–154, 2012.

I. Zulkarnain, M. Ramadhan, and B. Anwar, “Implementasi Alat Pendeteksi Warna Benda Menggunakan Fuzzy Logic dengan Sensor TCS3200 Berbasis Arduino,” J. Teknol. Sist. Inf. dan Sist. Komput. TGD, vol. 2, no. 2, pp. 106–117, 2019.

Published

2022-09-27

How to Cite

Septiyanda, Y., Muhtar, A., & Prasetyawan, P. (2022). SISTEM PENDETEKSI TARGET BERDASARKAN WARNA PADA AUTONOMOUS ROBOT GUN (ARO-GUN). Injection: Indonesian Journal of Vocational Mechanical Engineering, 2(2), 82-89. https://doi.org/10.58466/injection.v2i2.1485

Issue

Section

Artikel