Opini Public Terhadap Liga Korupsi Indonesia Pada Platform Youtube menggunakan Naive Bayes dan SMOTE
https://doi.org/10.58466/aicoms.v4i2.1810
Keywords:
Corruption League, Naïve Bayes, Public Opinion, Synthetic Minority Oversampling TechniqueAbstract
This study analyzes public opinion regarding the Corruption League in Indonesia by utilizing the Naïve Bayes method combined with the Synthetic Minority Oversampling Technique (SMOTE). The Corruption League is a compilation of corruption cases involving public officials, politicians, and other parties in Indonesia. In this research, Naïve Bayes is employed for sentiment classification, while SMOTE is used to address class imbalance within the dataset, which was collected from YouTube comments. The methodology consists of several stages, including data collection, labeling, preprocessing, classification, and model evaluation. The results reveal that Naïve Bayes without SMOTE achieves high performance in identifying the negative class but struggles significantly in recognizing the positive class, leading to an imbalanced classification outcome. Conversely, when Naïve Bayes is combined with SMOTE, the model’s performance becomes more balanced, showing a notable improvement in detecting the positive class. Additionally, accuracy increases from 79.7% to 84.3%. This study provides valuable insights into public perceptions and demonstrates the effectiveness of classification methods in the context of corruption issues in Indonesia.
References
Kementerian Keuangan Republik Indonesia, “Tindak pidana korupsi: Pengertian dan unsur-unsurnya,” Direktorat Jenderal Perbendaharaan,Feb. 22, 2022. [Online]. Available:
Kompas.com, “Daftar megakorupsi dalam klasemen Liga Korupsi Indonesia, terbesar hampir Rp 40 triliun,” Kompas, Feb. 27, 2025. [Online]. Available:
KH. Hermanto, R. Fahlapi, A. Y. Kuntoro, and T. Asra, "Perbandingan algoritma klasifikasi analisis sentimen pengguna aplikasi Getcontact dalam pencegahan penipuan online," J-INTECH (Journal of Information and Technology), vol. 12, no. 1, pp. 158–167, Jun. 2024. [Online]. Available:
https://jurnal.stiki.ac.id/J-INTECH/article/download/1262/773/
F. T. Berton, D. E. Ratnawati, and M. A. Rahman, “Perbandingan Naïve Bayes dan K-Nearest Neighbor untuk Analisis Sentimen Terhadap Ulasan Aplikasi Threads,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 1, no. 1, pp. 1–10, Jan. 2017. [Online]. Available:
https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/download/14109/6301/100161
M. A. Ramadhan dan M. I. Wahyudin, "Analisis Sentimen Mengenai Keberhasilan Indonesia di Ajang Thomas Cup 2020 (Studi Kasus Media Sosial Twitter) Menggunakan Metode Naïve Bayes dan Decision Tree," Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi), vol. 6, no. 4, pp. 505–511, Okt. 2022. [Online]. Available:
https://doi.org/10.35870/jtik.v6i4.560
Pemerintah Republik Indonesia, “Undang-Undang Nomor 31 Tahun 1999 tentang Pemberantasan Tindak Pidana Korupsi,” Hukumonline, 1999. [Online]. Available:
https://www.hukumonline.com/pusatdata/detail/1371/undangundang-nomor-31-tahun-1999/document/
H. Fitri and A. Wahyuni, “Analisis pengaruh e-government dalam pencegahan korupsi,” Jurnal Teknik Informatika dan Teknologi Informasi (JITET), vol. 9, no. 1, pp. 33–41, 2023. [Online]. Available:
https://journal.eng.unila.ac.id/index.php/jitet/article/view/6399/2533
A. H. Rahman, “Pemberantasan korupsi di Indonesia melalui strategi pendidikan antikorupsi,” Rechtsidee Law Journal, vol. 7, no. 1, pp. 15–22, 2020. [Online]. Available: https://e-journal.unair.ac.id/RLJ/article/download/8000/8356/55340
F. Hidayat, “Peran pendidikan karakter dalam menanggulangi korupsi sejak dini,” Jurnal Pendidikan, vol. 4, no. 2, pp. 50–55, 2021. [Online]. Available: https://repository.unmuhjember.ac.id/2730/8/Jurnal.pdf
D. Septiani dan I. Isabela, "Analisis Term Frequency Inverse Document Frequency (TF-IDF) dalam Temu Kembali Informasi pada Dokumen Teks," SINTESIA: Sistem dan Teknologi Informasi Indonesia, vol. 1, no. 2, pp. 123–130, 2022. [Online]. Available: https://journal.unj.ac.id/unj/index.php/SINTESIA/article/view/39364.
D. Darmanto, N. I. Pradasari, and E. Wahyudi, “Sistem deteksi plagiarisme tugas akhir mahasiswa berbasis Natural Language Processing menggunakan algoritma Jaro-Winkler dan TF-IDF,” Smart Comp: Jurnalnya Orang Pintar Komputer, vol. 13, no. 1, pp. 201–211, 2024.
M. P. Pulungan, A. Purnomo, dan A. Kurniasih, "Penerapan SMOTE untuk Mengatasi Imbalance Class dalam Klasifikasi Kepribadian MBTI Menggunakan Naive Bayes Classifier," Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), vol. 11, no. 5, pp. 1033–1042, Okt. 2024. [Online]. Available: https://jtiik.ub.ac.id/index.php/jtiik/article/view/7989
S. Rahayu dan A. S. RMS, "Penerapan Metode Naive Bayes Dalam Pemilihan Kualitas Jenis Rumput Taman CV. Rumput Kita Landscape," Digital Zone: Jurnal Teknologi Informasi dan Komunikasi, vol. 9, no. 2, pp. 162–171, Nov. 2018. [Online]. Available :
Caroline, F., Budi, R. G. S., & Rivan, M. E. A. (2024). Analisis sentimen masyarakat terhadap kasus korupsi PT. Timah menggunakan metode Support Vector Machine. Jurnal Ilmu Komputer dan Informatika (JIKI), 4(1), 43–50 . [Online]. Available: https://jiki.jurnal-id.com/index.php/jiki/article/view/141
Zulzila, A., Febiola, L. J., & Vionanda, D. (2025). Analysis of public sentiment towards corruption based on tweets using Naive Bayes classifier. UNP Journal of Statistics and Data Science, 3(1), 72–78. [Online]. Available: https://ujsds.ppj.unp.ac.id/index.php/ujsds/article/view/345
Simanjuntak, D. Y., Prabowo, R., & Sanjaya, A. P. (2023). Analisis sentimen masyarakat terhadap pemerintah pada Twitter menggunakan metode SVM dan Naive Bayes. Jurnal Teknologi dan Sistem Komputer Terpadu (JITeT), 1(2), 139–148. [Online]. Available: https://journal.eng.unila.ac.id/index.php/jitet/article/view/6399
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Aldi Ardiansyah, Mecha Bella Permata Sihombing Permata , Nur Rachmat

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


