Classification of Public Opinion Regarding the Naturalization of Football Players Using KNN and SMOTE

Authors

  • Rikky Rikky Universitas Multidata Palembang
  • Michelle Graciela Universitas Mutli data Palembang
  • Hafiz Irsyad Universitas Mutli Data Palembang
https://doi.org/10.58466/aicoms.v3i1.1547

Keywords:

K-Nearest Neighbor, Naturalization, Synthetic Minority Oversampling Technique

Abstract

This study analyzes public sentiment toward the naturalization of football players using the K-Nearest Neighbor (KNN) method and the Synthetic Minority Oversampling Technique (SMOTE). KNN is employed for sentiment classification, while SMOTE addresses class imbalance in the dataset. The methodology includes data collection, labeling, cleaning, preprocessing, classification, and model evaluation using Google Colab and Python. The results indicate that without SMOTE, the model performs better, achieving high precision, recall, F1 score, and accuracy. In contrast, applying SMOTE reduces performance, particularly in precision and F1 score. The "Manhattan Neighbor 7" and "Manhattan Neighbor 3" models without SMOTE demonstrate near-perfect results, while SMOTE significantly decreases several evaluation metrics. Additionally, the analysis of public opinions on YouTube reveals a tendency toward negative sentiment in podcasts about player naturalization, hosted by Bung Towel and Anjas Asmara, reflecting public skepticism and critical views on the topic. This study provides valuable insights into public sentiment and the effectiveness of classification methods in the context of national sports issues.

References

H. . Pratama, S. Sulendro, and G. . Prasetyo, “Pengaruh Latihan Tingkat Keterampilan Teknik Dasar Menggiring Bola Dalam Permainan Sepakbola Peserta Putra Ekstrakurikuler SMPN 1 Gandusari,” J. Phys. Act., vol. 3, no. 1, pp. 1–9, 2022, doi: 10.58343/jpa.v3i1.28.

A. Hidayat, I. Imanudin, and S. Ugelta, “Analisa Kebutuhan Latihan Fisik Pemain Sepakbola Dalam Kompetisi AFF U-19 (Studi Analisis Terhadap Pemain Gelandang Timnas Indonesia U-19),” J. Terap. Ilmu Keolahragaan, vol. 4, no. 1, pp. 1–4, 2019.

G. K. Annas and N. M. Hazzar, “ANALISIS PERSAMAAN HAK KEWARGANEGARAAN BAGI PEMAIN NATURALISASI SEPAKBOLA DI INDONESIA,” J. Wicarana, vol. 2, no. 2, pp. 127–143, 2024, [Online]. Available: https://www.ejournal-kumhamdiy.com/wicarana/article/view/37/29

H. Dhery, A. Assyam, and F. N. Hasan, “Analisis Sentimen Twitter Terhadap Perpindahan Ibu Kota Negara Ke IKN Nusantara Menggunakan Orange Data Mining,” KLIK Kaji. Ilm. Inform. dan Komput., vol. 4, no. 1, pp. 341–349, 2023, doi: 10.30865/klik.v4i1.957.

D. Cahyanti, A. Rahmayani, and S. A. Husniar, “Analisis performa metode Knn pada Dataset pasien pengidap Kanker Payudara,” Indones. J. Data Sci., vol. 1, no. 2, pp. 39–43, 2020, doi: 10.33096/ijodas.v1i2.13.

C. Yanasari and T. Arifin, “Implementasi Algoritma K-Nearest Neighbor Untuk Klasifikasi Penerimaan Beasiswa Program Indonesia Pintar,” J. Sist. Inf. dan Ilmu Komput., vol. 1, no. 4, pp. 178–194, 2023, [Online]. Available: https://doi.org/10.59581/jusiik-widyakarya.v1i4.1862

R. A. Nurdian, Mujib Ridwan, and Ahmad Yusuf, “Komparasi Metode SMOTE dan ADASYN dalam Meningkatkan Performa Klasifikasi Herregistrasi Mahasiswa Baru,” J. Tek. Inform. dan Sist. Inf., vol. 8, no. 1, pp. 24–32, 2022, doi: 10.28932/jutisi.v8i1.4004.

E. E. P. Billy Gunawan, Helen Sasty Pratiwi, “Pengembangan Analisis Sentimen dalam Rekayasa Software Engineering menggunakan tinjauan literatur sistematis,” J. MENTARI Manajemen, Pendidik. dan Teknol. Inf., vol. 2, no. 1, pp. 95–103, 2023, doi: 10.33050/mentari.v2i1.377.

Syahril Dwi Prasetyo, Shofa Shofiah Hilabi, and Fitri Nurapriani, “Analisis Sentimen Relokasi Ibukota Nusantara Menggunakan Algoritma Naïve Bayes dan KNN,” J. KomtekInfo, vol. 10, pp. 1–7, 2023, doi: 10.35134/komtekinfo.v10i1.330.

ichsan nur irmasnyah Nurul chafid, luqman mujianto, “Penerapan Filter Kata Menggunakan Metode Stemming Pada Aplikasi Chatting Berbasis Web,” vol. 1, no. 1, pp. 1–9, 2020.

M. I. W. Slamet Harry Ramadhani, “Analisis Sentimen Terhadap Vaksinasi Astra Zeneca pada Twitter Menggunakan Metode Naïve Bayes dan K-NN,” J. Teknol. Inf. dan Komun., p. 530, 2022, [Online]. Available: https://journal.lembagakita.org/index.php/jtik/article/view/530

O. I. Gifari, M. Adha, F. Freddy, and F. F. S. Durrand, “Analisis Sentimen Review Film Menggunakan TF-IDF dan Support Vector Machine,” J. Inf. Technol., vol. 2, no. 1, pp. 36–40, 2022, doi: 10.46229/jifotech.v2i1.330.

Published

2024-06-28

How to Cite

Rikky, R., Graciela, M., & Irsyad, H. (2024). Classification of Public Opinion Regarding the Naturalization of Football Players Using KNN and SMOTE. Applied Information Technology and Computer Science (AICOMS), 3(1), 21-27. https://doi.org/10.58466/aicoms.v3i1.1547

Issue

Section

Artikel