Sentiment Analysis of Indonesian National Team Football Match Results in the U-23 Asian Cup on the YouTube Platform using the Support Vector Machine (SVM) Algorithm
Keywords:
Analisis Sentimen, Support Vector Machine (SVM), Tim Nasional Indonesia, Piala Asia U23Abstract
This study aims to analyze YouTube users' perceptions of the Indonesian national football team's matches in the 2024 AFC U23 Asian Cup. The research seeks to identify whether user sentiments toward the team's match results are positive, negative, or neutral. By using comments from the YouTube platform, the study examines public reactions to the outcomes of the Indonesian national team's matches in the U23 Asian Cup. Sentiment analysis of the match results was conducted using the Support Vector Machine (SVM) algorithm. Two SVM-based classification models were evaluated, one utilizing 40% of the data for testing and the other using 60%.
The findings reveal that the first model, with 40% test data, achieved an accuracy of 65.41%, while the second model achieved an accuracy of 63.76%. Although the first model demonstrated slightly higher accuracy, the second model performed better in terms of precision (61.65%), recall (63.76%), and F1-Score (55.68%).
References
F. M. Athalarik and U. Rusadi, “Sepak Bola Indonesia dalam Perspektif Komodifikasi Budaya Populer,” J. Pendidik. Tambusai, vol. 7, pp. 25476–25487, 2023, [Online]. Available: https://www.jptam.org/index.php/jptam/article/view/10659%0Ahttps://www.jptam.org/index.php/jptam/article/download/10659/8533.
N. Dalifah, N. Suarna, and W. Prihartono, “Analisis Data Sentimen Negatif Pada Opini Pengguna Twitter Terhadap Berita Sepak Bola Liga 1 Tahun 2022 Dengan Penerapan Support Vector Mechine,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 1, pp. 209–214, 2024, doi: 10.36040/jati.v8i1.8303.
E. L. P. E-issn, J. Teknik, R. Pebrianto, S. N. Nugraha, A. Latif, and M. R. Firdaus, “ANALISIS SENTIMEN TWITTER TERHADAP MENTERI INDONESIA DENGAN ALGORITMA SUPPORT VECTOR MACHINE,” vol. 17, pp. 1–12, 2022.
H. C. Husada and A. S. Paramita, “Analisis Sentimen Pada Maskapai Penerbangan di Platform Twitter Menggunakan Algoritma Support Vector Machine (SVM),” Teknika, vol. 10, no. 1, pp. 18–26, 2021, doi: 10.34148/teknika.v10i1.311.
D. Nbc, “Analisis Sentimen Pada Ulasan Aplikasi Kredivo Dengan Algoritma SVM,” vol. 2, no. 2, pp. 85–91, 2021.
S. Styawati, N. Hendrastuty, and A. R. Isnain, “Analisis Sentimen Masyarakat Terhadap Program Kartu Prakerja Pada Twitter Dengan Metode Support Vector Machine,” J. Inform. J. Pengemb. IT, vol. 6, no. 3, pp. 150–155, 2021, doi: 10.30591/jpit.v6i3.2870.
H. Syah and A. Witanti, “Analisis Sentimen Masyarakat Terhadap Vaksinasi Covid-19 Pada Media Sosial Twitter Menggunakan Algoritma Support Vector Machine (Svm),” J. Sist. Inf. dan Inform., vol. 5, no. 1, pp. 59–67, 2022, doi: 10.47080/simika.v5i1.1411.
A. Karimah et al., “Analisis Sentimen Komentar Video Mobil Listrik Di Platform,” vol. 8, no. 1, pp. 767–773, 2024.
R. Fatmasari, V. M. Ayu, H. Anto, W. Gata, and L. D. Yulianto, “Analisis Sentimen Dalam Pengkategorian Komentar Youtube Terhadap Layanan Akademik dan Non-Akademik Universitas Terbuka Untuk Prediksi Kepuasan,” Build. Informatics, Technol. Sci., vol. 4, no. 2, pp. 395–404, 2022, doi: 10.47065/bits.v4i2.1738.
I. Afdhal, R. Kurniawan, I. Iskandar, R. Salambue, E. Budianita, and F. Syafria, “Penerapan Algoritma Random Forest Untuk Analisis Sentimen Komentar Di YouTube Tentang Islamofobia,” J. Nas. Komputasi dan Teknol. Inf., vol. 5, no. 1, pp. 122–130, 2022, [Online]. Available: http://ojs.serambimekkah.ac.id/jnkti/article/view/4004/pdf.
M. I. Fikri, T. S. Sabrila, and Y. Azhar, “Comparison of Naïve Bayes and Support Vector Machine Methods in Twitter Sentiment Analysis,” Smatika J., vol. 10, no. 02, pp. 71–76, 2020.