Sentiment Analysis of Twitter Comments on Manchester United's Performance Using the Support Vector Machine Algorithm
Keywords:
Analis Sentimen, Manchester United, komentar, Support Vector Machine, twitterAbstract
Manchester United is one of the largest clubs in the English Premier League with an exceptional history in European and global football. In the 2023/2024 season, Manchester United experienced a very poor season, leading to various positive and negative sentiments from its fans, especially on social media. Sentiment data was gathered from Twitter, where Manchester United fans expressed their opinions regarding the team's performance in the Premier League. This study employs the Support Vector Machine (SVM) method to process and classify data collected from Twitter, aiming to analyze the sentiments of Manchester United fans based on their social media comments. The results indicate that the performance of the Support Vector Machine is relatively poor, achieving an accuracy of 58.73%. This is due to the dataset relying on a single keyword, which led to suboptimal and less complex data, resulting in the Support Vector Machine (SVM) producing relatively low accuracy.
References
J. J. Viera, S. Maryam, and L. Prihatini, “Analisa kejahatan Streaming Ilegal Liga Inggris: Tantangan Hukum, Ekonomi dan Dampak Pada Studi Kasus Zal TV,” Indones. J. Islam. Jurisprudence,Economic Leg. Theory, vol. 1, no. 4, pp. 989–997, 2023, [Online]. Available: http://www.shariajournal.com/index.php/IJIJEL/article/view/301/99
M. N. Humam, “Perbandingan Kinerja CNN dan Naïve Bayes pada Analisis Sentimen Performa Manchester United di Twitter,” J. Inf. Eng. Educ. Technol., vol. 7, no. 2, pp. 83–91, 2023, doi: 10.26740/jieet.v7n2.p83-91.
Rina Noviana and Isram Rasal, “Penerapan Algoritma Naive Bayes Dan Svm Untuk Analisis Sentimen Boy Band Bts Pada Media Sosial Twitter,” J. Tek. dan Sci., vol. 2, no. 2, pp. 51–60, 2023, doi: 10.56127/jts.v2i2.791.
H. Sujadi, “Analisis Sentimen Pengguna Media Sosial Twitter Terhadap Wabah Covid-19 Dengan Metode Naive Bayes Classifier Dan Support Vector Machine,” INFOTECH J., vol. 8, no. 1, pp. 22–27, 2022, doi: 10.31949/infotech.v8i1.1883.
S. Rahayu and Y. Yamasari, “Klasifikasi Penyakit Stroke dengan Metode Support Vector Machine (SVM),” J. Informatics Comput. Sci., vol. 05, pp. 440–446, 2024.
S. Styawati, N. Hendrastuty, and A. R. Isnain, “Analisis Sentimen Masyarakat Terhadap Program Kartu Prakerja Pada Twitter Dengan Metode Support Vector Machine,” J. Inform. J. Pengemb. IT, vol. 6, no. 3, pp. 150–155, 2021, doi: 10.30591/jpit.v6i3.2870.
I. Indriati, M. Marji, and S. Pakpahan, “Analisis Sentimen Tentang Opini Performa Klub Sepak Bola Pada Dokumen Twitter Menggunakan Support Vector Machine Dengan Perbaikan Kata Tidak Baku,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 7, pp. 7259–7267, 2019.
M. S. Syahlan, D. Irmayanti, and S. Alam, “Analisis Sentimen Terhadap Tempat Wisata Dari Komentar Pengunjung Dengan Menggunakan Metode Support Vector Machine (Svm),” Simtek J. Sist. Inf. dan Tek. Komput., vol. 8, no. 2, pp. 315–319, 2023, doi: 10.51876/simtek.v8i2.281.
T. Ridwansyah, “Implementasi Text Mining Terhadap Analisis Sentimen Masyarakat Dunia Di Twitter Terhadap Kota Medan Menggunakan K-Fold Cross Validation Dan Naïve Bayes Classifier,” KLIK Kaji. Ilm. Inform. dan Komput., vol. 2, no. 5, pp. 178–185, 2022, doi: 10.30865/klik.v2i5.362.
A. Karami, M. Lundy, F. Webb, and Y. K. Dwivedi, “Twitter and Research: A Systematic Literature Review through Text Mining,” IEEE Access, vol. 8, pp. 67698–67717, 2020, doi: 10.1109/ACCESS.2020.2983656.
K. Yan, D. Arisandi, and T. Tony, “Analisis Sentimen Komentar Netizen Twitter Terhadap Kesehatan Mental Masyarakat Indonesia,” J. Ilmu Komput. dan Sist. Inf., vol. 10, no. 1, 2022, doi: 10.24912/jiksi.v10i1.17865.
M. Suhaemi, “The Effect Brand Love And Brand Personality On Brand Loyalty (Study On Member Fans Club Football Manchester United In Indonesia),” Manag. Bus. Soc. Sci. Peer Rev. J., vol. 1, no. 2, pp. 209–218, 2021, [Online]. Available: https://cvodis.com/ijembis/index.php/ijembis
G. A. Mursianto, D. Widiyanto, and B. T. Wahyono, “Analisis Sentimen Ulasan Pengguna Pada Aplikasi Google Classroom Menggunakan Metode SVM Dan Seleksi Fitur PSO,” Inform. J. Ilmu Komput., vol. 18, no. 3, p. 221, 2022, doi: 10.52958/iftk.v18i3.4685.
J. A. Septian, T. M. Fachrudin, and A. Nugroho, “Analisis Sentimen Pengguna Twitter Terhadap Polemik Persepakbolaan Indonesia Menggunakan Pembobotan TF-IDF dan K-Nearest Neighbor,” J. Intell. Syst. Comput., vol. 1, no. 1, pp. 43–49, 2019, doi: 10.52985/insyst.v1i1.36.
M. F. Muzakki, Jondri, and R. F. Umbara, “Analisis Sentimen Mahasiswa Terhadap Fasilitas Universitas Telkom Menggunakan Metode Jaringan Saraf Tiruan Dan Tf-Idf,” e-Prodeceeding Eng., vol. 6, no. 2, pp. 8608–8616, 2019, [Online]. Available: https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/9834
R. J. Medford, S. N. Saleh, A. Sumarsono, T. M. Perl, and C. U. Lehmann, “An ‘Infodemic’: Leveraging high-volume twitter data to understand early public sentiment for the Coronavirus disease 2019 outbreak,” Open Forum Infect. Dis., vol. 7, no. 7, 2020, doi: 10.1093/ofid/ofaa258.