Public Opinion on the Issue of Pertamax Adulteration on YouTube Using the Naive Bayes Method

Authors

  • Adikara Alif Nurrahman Universitas Multi Data Palembang
  • Earlando Moza Universitas Multi Data Palembang
  • Ramanda Md Universitas Multi Data Palembang
  • Muhamad Rizvi Roshan Universitas Multi Data Palembang
  • Ahmad Rizky Universitas Multi Data Palembang
  • Hafiz Irsyad Universitas Multi Data Palembang
https://doi.org/10.58466/aicoms.v4i2.1990

Keywords:

Naive Bayes, Public Opinion, Pertamax Adulteration, SMOTE, Sentiment Analysis, Youtube

Abstract

This study aims to explore public perceptions regarding the issue of Pertamax fuel adulteration, a topic that has sparked widespread discussion on YouTube, by employing sentiment analysis techniques based on the Naive Bayes algorithm. This issue has attracted significant public attention and become a trending topic on social media, particularly on the YouTube platform. The data analyzed in this research consist of user comments responding to the issue. The Naive Bayes algorithm is used to classify sentiments in the comments into three categories: positive, negative, and neutral. To address the imbalanced distribution of data, the Synthetic Minority Over-sampling Technique (SMOTE) is applied. The results show that before applying SMOTE, the model achieved an accuracy of only 48%, with a precision of 0.48, recall of 0.36, and an F1-score of 0.41 for the negative category, as well as a precision of 0.48, recall of 0.56, and an F1-score of 0.52 for the positive category. After implementing SMOTE, the model's accuracy increased significantly to 88%, with a precision of 0.91, recall of 0.93, and an F1-score of 0.92 for the negative category. For the positive category, precision improved to 0.80, although recall decreased to 0.75, yielding an F1-score of 0.77. The average precision, recall, and F1-score (macro average) after applying SMOTE reached 0.85, 0.84, and 0.85, respectively, representing a substantial improvement compared to the results before SMOTE. This study highlights the importance of using SMOTE to enhance sentiment analysis accuracy, particularly in addressing class imbalance issues within the dataset.

References

D. A. Ramadhanti, “Opini Publik terhadap Drama SBS Racket Boys di Media Sosial,” vol. 1, no. 11. 2021.

S. Mulyono, G. Gunawan, and B. Maryanti, “Pengaruh Penggunaan dan Perhitungan Efisiensi Bahan Bakar Premium dan Pertamax Terhadap Unjuk Kerja Motor Bakar Bensin,” JTT (Jurnal Teknol. Terpadu), vol. 2, no. 1, pp. 28–35, 2014, doi: 10.32487/jtt.v2i1.38.

A. Ridwan, “Penerapan Algoritma Naïve Bayes Untuk Klasifikasi Penyakit Diabetes Mellitus,” J. SISKOM-KB (Sistem Komput. dan Kecerdasan Buatan), vol. 4, no. 1, pp. 15–21, 2020, doi: 10.47970/siskom-kb.v4i1.169.

D. Abimanyu, E. Budianita, E. P. Cynthia, F. Yanto, and Y. Yusra, “Analisis Sentimen Akun Twitter Apex Legends Menggunakan VADER,” J. Nas. Komputasi dan Teknol. Inf., vol. 5, no. 3, pp. 423–431, 2022, doi: 10.32672/jnkti.v5i3.4382.

M. N. Muttaqin and I. Kharisudin, “Analisis Sentimen Pada Ulasan Aplikasi Gojek Menggunakan Metode Support Vector Machine dan K Nearest Neighbor,” UNNES J. Math., vol. 10, no. 2, pp. 22–27, 2021, [Online]. Available: http://journal.unnes.ac.id/sju/index.php/ujm

Friska Aditia Indriyani, Ahmad Fauzi, and Sutan Faisal, “Analisis sentimen aplikasi tiktok menggunakan algoritma naïve bayes dan support vector machine,” TEKNOSAINS J. Sains, Teknol. dan Inform., vol. 10, no. 2, pp. 176–184, 2023, doi: 10.37373/tekno.v10i2.419.

A. Y. Simanjuntak, I. S. S. Simatupang, and Anita, “Implementasi Data Mining Menggunakan Metode Naïve Bayes Classifier Untuk Data Kenaikan Pangkat Dinas,” J. Sci. Soc. Res., vol. 4307, no. 1, pp. 85–91, 2022.

R. Vincent, I. Maulana, and O. Komarudin, “Perbandingan Klasifikasi Naive Bayes Dan Support Vector Machine Dalam Analisis Sentimen Dengan Multiclass Di Twitter,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 4, pp. 2496–2505, 2024, doi: 10.36040/jati.v7i4.7152.

O. V. Putra, T. Harmini, and A. Saroji, “Outlier Detection On Graduation Data Of Darussalam Gontor University Using One-Class Support Vector Machine,” Procedia Eng. Life Sci., vol. 2, no. 2, pp. 89–92, 2021, doi: 10.21070/pels.v2i0.1139.

N. P. Y. T. WIJAYANTI, E. N. KENCANA, and I. W. SUMARJAYA, “Smote: Potensi Dan Kekurangannya Pada Survei,” E-Jurnal Mat., vol. 10, no. 4, p. 235, 2021, doi: 10.24843/mtk.2021.v10.i04.p348.

I. D. Id, MACHINE LEARNING : Teori, Studi Kasus dan Implementasi Menggunakan Python. Unri Press. [Online]. Available: https://books.google.co.id/books?id=JvBPEAAAQBAJ

H. I. Putra Ganda Dewata1, Azzar Rizky2, “Jurnal Rein,” Anal. Sentimen Terhadap Boikot Prod. Isr. Menggunakan Algoritm. Naive Bayes Dan SMOTE, vol. 1, no. 1, pp. 16–21, 2024.

D. Darmanto, N. I. Pradasari, and E. Wahyudi, “Sistem Deteksi Plagiarisme Tugas Akhir Mahasiswa Berbasis Natural Language Pro-cessing Menggunakan Algoritma Jaro-Winkler dan TF-IDF,” Smart Comp: Jurnalnya Orang Pintar Komputer, vol. 13, no. 1, pp. 201–211, 2024.

Published

2025-11-20

How to Cite

Adikara Alif Nurrahman, Moza , E. ., Md, R. ., Rizvi Roshan , M. ., Rizky , A. ., & Irsyad , H. . (2025). Public Opinion on the Issue of Pertamax Adulteration on YouTube Using the Naive Bayes Method. Applied Information Technology and Computer Science (AICOMS), 4(2), 55-61. https://doi.org/10.58466/aicoms.v4i2.1990

Issue

Section

Artikel